STAR TEMPERATURE AND SIZE

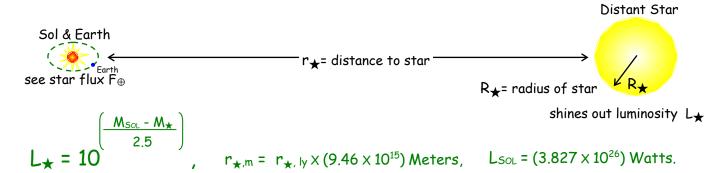
TEMPERATURE FROM THE LINE SPECTRUM: THE SPECTRAL CLASS

If λ_{peak} isn't known, thanks to the work of Cecilia Payne-Gaposchkin (1900-1979), the spectral class can be used to estimate the temperature. This is done by interpolation between the minimum and maximum temperatures of each spectral class:

TEMPERATURE FROM SPECTRAL TYPE

$$T = T_{max} - \left\{ \left(subclass \right) \times \left(\frac{T_{max} - T_{min}}{10} \right) \right\}$$

Here the subclass is the number given with the spectral type (e.g. the 2 in Sol's G2), T_{max} is the highest temperature in the spectral class and T_{min} is the lowest.


SIZE OF AN OPAQUE, SPHERICAL STAR: THE STEFAN-BOLTZMANN LAW:

The Stefan-Boltzmann law relates the luminosity of a star to its temperature and its emitting surface area ($4\pi R^2$) $\mathsf{R}_{\star} = \sqrt{\frac{\mathsf{L}_{\star}}{4\pi\sigma\mathsf{T}^4}}$

RADIUS FROM LUMINOSITY AND TEMPERATURE

where R_{\star} is the radius of the star in m, σ = 5.67 × 10⁻⁸ W/M²K⁴, R_{\odot} = 6.96 × 10⁸ m, and r_{\oplus} = 1.496 × 10¹¹ m.

STAR	FIELD GUIDE TO THE STARS AND PLANETS TABLE A2				CALCULATED					
					<u>FG</u> A3	LUMINOSITY		SIZE		
	v	M_V	r _*	Spec.	Т	L _{*,SOL}	L*	R★	R★/R⊠	R_{\star}/r_{\oplus}
			ly	Type	К	In L _{sol}	In Watts	Billions of m	(num- ber)	%
Polaris (α UMi)	2.0	-4.1	431	F5 I						
Rigel (β Ori)	0.12	-6.6	773	B8 I						
Sirius (a CMa)	-1.46	1.5	9	AIV						
Aldebaran (α Tau)	0.85	-0.8	65	K5 III						
Betelgeuse (α Ori)	0.5	-5.0	522	M2 I						
Procyon (α CMi)	0.38	2.8	11	F5 IV						

Phys 102: Astronomy